If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-96=0
a = 2; b = 20; c = -96;
Δ = b2-4ac
Δ = 202-4·2·(-96)
Δ = 1168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1168}=\sqrt{16*73}=\sqrt{16}*\sqrt{73}=4\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{73}}{2*2}=\frac{-20-4\sqrt{73}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{73}}{2*2}=\frac{-20+4\sqrt{73}}{4} $
| m-40=-38 | | -6z-7=17 | | u+-136=-827 | | 15y-10y-6=94 | | 3(6-4x)-1=89 | | -15=2a+7 | | 7x+8x+9=8x+7x+12 | | 7,5-(25-5y)=8y-34 | | X2-9x-136=0 | | 2x2-33x+170=0 | | 5(6x-3)=195 | | 6x+21=9(5-4x)+8 | | -26=2(1-3v)+2(8+2v) | | -3(8+2x)+6=-18-6x | | s+-432=-269 | | −1.8=9.4+a. | | 6-(5-x)=-3x-11 | | -715=v+-966 | | 2a+2a=4 | | 15y-10y-6=94.40 | | 5-4(3x+4)=-11x+1 | | -4(3x+4)=-11x+1 | | s/31=-26 | | 14/7=n21 | | -134=-4(2+5x)-x | | 10x-54=31+5x | | 4y-2=20,y | | 4x-33=3+x | | 11q=264 | | u+388=-123 | | 8(-7p-7)=-5-5p | | 3x-16=7x+40 |